Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine.

نویسندگان

  • Yunlei Yang
  • Wooping Ge
  • Yiren Chen
  • Zhijun Zhang
  • Wanhua Shen
  • Chienping Wu
  • Muming Poo
  • Shumin Duan
چکیده

Repetitive correlated activation of pre- and postsynaptic neurons induced long-term potentiation (LTP) of synaptic transmission among hippocampal neurons grown on a layer of astrocytes (mixed cultures) but not among neurons cultured in glial conditioned medium. Supplement of D-serine, an agonist for the glycine-binding site of N-methyl-D-aspartate (NMDA) receptors, enhanced NMDA receptor activation and enabled LTP induction in glial conditioned medium cultures. The induction of LTP in both mixed cultures and hippocampal slices was suppressed by NMDA receptor antagonists, glycine-binding-site blockers of NMDA receptors, or an enzyme that degrades endogenous D-serine. By providing extracellular D-serine that facilitates activation of NMDA receptors, astrocytes thus play a key role in long-term synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release.

Astrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memo...

متن کامل

Astrocyte-originated ATP protects Aβ(1-42)-induced impairment of synaptic plasticity.

Activated microglia and reactive astrocytes are commonly found in and around the senile plaque, which is the central pathological hallmark of Alzheimer's disease. Astrocytes respond to neuronal activity through the release of gliotransmitters such as glutamate, D-serine, and ATP. However, it is largely unknown whether and how gliotransmitters affect neuronal functions. In this study, we explore...

متن کامل

An active role for astrocytes in synaptic plasticity?

Recently, Henneberger and colleagues blocked hippocampal long-term synaptic potentiation (LTP) induction by "clamping" intracellular calcium concentration of individual CA1 astrocytes, suggesting calcium-dependent gliotransmitter release from astocytes plays a role in hippocampal LTP induction. However, using transgenic mice to manipulate astrocytic calcium, Agulhon and colleagues demonstrated ...

متن کامل

Block of 5-HT2 Receptors Enhances Hippocampal Long-Term Potentiation

The effect of endogenous serotonin on long-term potentiation (LTP) in region CAI was studied by blocking 5-HT2 receptors with ketanserin in rat hippocampal slices. Such a block significantly en-hanced long-term potentiation of the CAI population spike induced by high frequency stimulation of the schaffer collateral/ commissural pathway. This implies that serotonin acts on 5-HT2 receptors in CAI...

متن کامل

Neuronal activity determines distinct gliotransmitter release from a single astrocyte

Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 100 25  شماره 

صفحات  -

تاریخ انتشار 2003